\(\int \frac {A+B x^2}{x^{3/2} (a+b x^2)^2} \, dx\) [380]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 289 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=-\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}+\frac {(5 A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}+\frac {(5 A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}} \]

[Out]

1/8*(5*A*b-B*a)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(9/4)/b^(3/4)*2^(1/2)-1/8*(5*A*b-B*a)*arctan(1+b^(
1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(9/4)/b^(3/4)*2^(1/2)-1/16*(5*A*b-B*a)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^
(1/2)*x^(1/2))/a^(9/4)/b^(3/4)*2^(1/2)+1/16*(5*A*b-B*a)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/
a^(9/4)/b^(3/4)*2^(1/2)+1/2*(-5*A*b+B*a)/a^2/b/x^(1/2)+1/2*(A*b-B*a)/a/b/(b*x^2+a)/x^(1/2)

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.409, Rules used = {468, 331, 335, 303, 1176, 631, 210, 1179, 642} \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {(5 A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}+\frac {(5 A b-a B) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}-\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )} \]

[In]

Int[(A + B*x^2)/(x^(3/2)*(a + b*x^2)^2),x]

[Out]

-1/2*(5*A*b - a*B)/(a^2*b*Sqrt[x]) + (A*b - a*B)/(2*a*b*Sqrt[x]*(a + b*x^2)) + ((5*A*b - a*B)*ArcTan[1 - (Sqrt
[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(4*Sqrt[2]*a^(9/4)*b^(3/4)) - ((5*A*b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x
])/a^(1/4)])/(4*Sqrt[2]*a^(9/4)*b^(3/4)) - ((5*A*b - a*B)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt
[b]*x])/(8*Sqrt[2]*a^(9/4)*b^(3/4)) + ((5*A*b - a*B)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x
])/(8*Sqrt[2]*a^(9/4)*b^(3/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d
))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*n*(p + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a
*b*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0]
 && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0]
&& LeQ[-1, m, (-n)*(p + 1)]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps \begin{align*} \text {integral}& = \frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}+\frac {\left (\frac {5 A b}{2}-\frac {a B}{2}\right ) \int \frac {1}{x^{3/2} \left (a+b x^2\right )} \, dx}{2 a b} \\ & = -\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}-\frac {(5 A b-a B) \int \frac {\sqrt {x}}{a+b x^2} \, dx}{4 a^2} \\ & = -\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{2 a^2} \\ & = -\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}+\frac {(5 A b-a B) \text {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{4 a^2 \sqrt {b}}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{4 a^2 \sqrt {b}} \\ & = -\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{8 a^2 b}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{8 a^2 b}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} a^{9/4} b^{3/4}} \\ & = -\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}-\frac {(5 A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}+\frac {(5 A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}+\frac {(5 A b-a B) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}} \\ & = -\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}+\frac {(5 A b-a B) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}+\frac {(5 A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.51 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.56 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {\frac {4 \sqrt [4]{a} \left (-4 a A-5 A b x^2+a B x^2\right )}{\sqrt {x} \left (a+b x^2\right )}+\frac {\sqrt {2} (5 A b-a B) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{b^{3/4}}+\frac {\sqrt {2} (5 A b-a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{b^{3/4}}}{8 a^{9/4}} \]

[In]

Integrate[(A + B*x^2)/(x^(3/2)*(a + b*x^2)^2),x]

[Out]

((4*a^(1/4)*(-4*a*A - 5*A*b*x^2 + a*B*x^2))/(Sqrt[x]*(a + b*x^2)) + (Sqrt[2]*(5*A*b - a*B)*ArcTan[(Sqrt[a] - S
qrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/b^(3/4) + (Sqrt[2]*(5*A*b - a*B)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4
)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/b^(3/4))/(8*a^(9/4))

Maple [A] (verified)

Time = 2.70 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.53

method result size
derivativedivides \(-\frac {2 \left (\frac {\left (\frac {A b}{4}-\frac {B a}{4}\right ) x^{\frac {3}{2}}}{b \,x^{2}+a}+\frac {\left (\frac {5 A b}{4}-\frac {B a}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{2}}-\frac {2 A}{a^{2} \sqrt {x}}\) \(153\)
default \(-\frac {2 \left (\frac {\left (\frac {A b}{4}-\frac {B a}{4}\right ) x^{\frac {3}{2}}}{b \,x^{2}+a}+\frac {\left (\frac {5 A b}{4}-\frac {B a}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{2}}-\frac {2 A}{a^{2} \sqrt {x}}\) \(153\)
risch \(-\frac {2 A}{a^{2} \sqrt {x}}-\frac {\frac {2 \left (\frac {A b}{4}-\frac {B a}{4}\right ) x^{\frac {3}{2}}}{b \,x^{2}+a}+\frac {\left (\frac {5 A b}{4}-\frac {B a}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}}{a^{2}}\) \(154\)

[In]

int((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

-2/a^2*((1/4*A*b-1/4*B*a)*x^(3/2)/(b*x^2+a)+1/8*(5/4*A*b-1/4*B*a)/b/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(
1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)
+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)))-2*A/a^2/x^(1/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 789, normalized size of antiderivative = 2.73 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=-\frac {{\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) + {\left (-i \, a^{2} b x^{3} - i \, a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) + {\left (i \, a^{2} b x^{3} + i \, a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) - {\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) - 4 \, {\left ({\left (B a - 5 \, A b\right )} x^{2} - 4 \, A a\right )} \sqrt {x}}{8 \, {\left (a^{2} b x^{3} + a^{3} x\right )}} \]

[In]

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*((a^2*b*x^3 + a^3*x)*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(
a^9*b^3))^(1/4)*log(a^7*b^2*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)
/(a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2*a^2*b + 75*A^2*B*a*b^2 - 125*A^3*b^3)*sqrt(x)) + (-I*a^2*b*x^3 - I*a^3
*x)*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(1/4)*log(I*
a^7*b^2*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(3/4) -
(B^3*a^3 - 15*A*B^2*a^2*b + 75*A^2*B*a*b^2 - 125*A^3*b^3)*sqrt(x)) + (I*a^2*b*x^3 + I*a^3*x)*(-(B^4*a^4 - 20*A
*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(1/4)*log(-I*a^7*b^2*(-(B^4*a^4 -
 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2*
a^2*b + 75*A^2*B*a*b^2 - 125*A^3*b^3)*sqrt(x)) - (a^2*b*x^3 + a^3*x)*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2
*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(1/4)*log(-a^7*b^2*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*
B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2*a^2*b + 75*A^2*B*a*b^2 - 1
25*A^3*b^3)*sqrt(x)) - 4*((B*a - 5*A*b)*x^2 - 4*A*a)*sqrt(x))/(a^2*b*x^3 + a^3*x)

Sympy [A] (verification not implemented)

Time = 138.07 (sec) , antiderivative size = 916, normalized size of antiderivative = 3.17 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=A \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {9}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{a^{2} \sqrt {x}} & \text {for}\: b = 0 \\- \frac {2}{9 b^{2} x^{\frac {9}{2}}} & \text {for}\: a = 0 \\- \frac {5 a \sqrt {x} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} + \frac {5 a \sqrt {x} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {10 a \sqrt {x} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {16 a \sqrt [4]{- \frac {a}{b}}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {5 b x^{\frac {5}{2}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} + \frac {5 b x^{\frac {5}{2}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {10 b x^{\frac {5}{2}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {20 b x^{2} \sqrt [4]{- \frac {a}{b}}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases}\right ) + B \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a^{2}} & \text {for}\: b = 0 \\- \frac {2}{5 b^{2} x^{\frac {5}{2}}} & \text {for}\: a = 0 \\\frac {a \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {a \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {4 b x^{\frac {3}{2}} \sqrt [4]{- \frac {a}{b}}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {b x^{2} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {b x^{2} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 b x^{2} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases}\right ) \]

[In]

integrate((B*x**2+A)/x**(3/2)/(b*x**2+a)**2,x)

[Out]

A*Piecewise((zoo/x**(9/2), Eq(a, 0) & Eq(b, 0)), (-2/(a**2*sqrt(x)), Eq(b, 0)), (-2/(9*b**2*x**(9/2)), Eq(a, 0
)), (-5*a*sqrt(x)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)
) + 5*a*sqrt(x)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4))
- 10*a*sqrt(x)*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) -
16*a*(-a/b)**(1/4)/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 5*b*x**(5/2)*log(sqrt(x)
 - (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) + 5*b*x**(5/2)*log(sqrt(x)
+ (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 10*b*x**(5/2)*atan(sqrt(x)
/(-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 20*b*x**2*(-a/b)**(1/4)/(8*
a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)), True)) + B*Piecewise((zoo/x**(5/2), Eq(a, 0) &
Eq(b, 0)), (2*x**(3/2)/(3*a**2), Eq(b, 0)), (-2/(5*b**2*x**(5/2)), Eq(a, 0)), (a*log(sqrt(x) - (-a/b)**(1/4))/
(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) - a*log(sqrt(x) + (-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4
) + 8*a*b**2*x**2*(-a/b)**(1/4)) + 2*a*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a
/b)**(1/4)) + 4*b*x**(3/2)*(-a/b)**(1/4)/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) + b*x**2*log(s
qrt(x) - (-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) - b*x**2*log(sqrt(x) + (-a/b)**
(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) + 2*b*x**2*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**2*b
*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)), True))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.77 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {{\left (B a - 5 \, A b\right )} x^{2} - 4 \, A a}{2 \, {\left (a^{2} b x^{\frac {5}{2}} + a^{3} \sqrt {x}\right )}} + \frac {{\left (B a - 5 \, A b\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{16 \, a^{2}} \]

[In]

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*((B*a - 5*A*b)*x^2 - 4*A*a)/(a^2*b*x^(5/2) + a^3*sqrt(x)) + 1/16*(B*a - 5*A*b)*(2*sqrt(2)*arctan(1/2*sqrt(
2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sq
rt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*s
qrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt
(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)))/a^2

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 278, normalized size of antiderivative = 0.96 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {B a x^{2} - 5 \, A b x^{2} - 4 \, A a}{2 \, {\left (b x^{\frac {5}{2}} + a \sqrt {x}\right )} a^{2}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{3}} \]

[In]

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*(B*a*x^2 - 5*A*b*x^2 - 4*A*a)/((b*x^(5/2) + a*sqrt(x))*a^2) + 1/8*sqrt(2)*((a*b^3)^(3/4)*B*a - 5*(a*b^3)^(
3/4)*A*b)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^3) + 1/8*sqrt(2)*((a*b^3)^(
3/4)*B*a - 5*(a*b^3)^(3/4)*A*b)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^3) -
 1/16*sqrt(2)*((a*b^3)^(3/4)*B*a - 5*(a*b^3)^(3/4)*A*b)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*
b^3) + 1/16*sqrt(2)*((a*b^3)^(3/4)*B*a - 5*(a*b^3)^(3/4)*A*b)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b)
)/(a^3*b^3)

Mupad [B] (verification not implemented)

Time = 5.01 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.36 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (5\,A\,b-B\,a\right )}{4\,{\left (-a\right )}^{9/4}\,b^{3/4}}-\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (5\,A\,b-B\,a\right )}{4\,{\left (-a\right )}^{9/4}\,b^{3/4}}-\frac {\frac {2\,A}{a}+\frac {x^2\,\left (5\,A\,b-B\,a\right )}{2\,a^2}}{a\,\sqrt {x}+b\,x^{5/2}} \]

[In]

int((A + B*x^2)/(x^(3/2)*(a + b*x^2)^2),x)

[Out]

(atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))*(5*A*b - B*a))/(4*(-a)^(9/4)*b^(3/4)) - (atan((b^(1/4)*x^(1/2))/(-a)^(1/4
))*(5*A*b - B*a))/(4*(-a)^(9/4)*b^(3/4)) - ((2*A)/a + (x^2*(5*A*b - B*a))/(2*a^2))/(a*x^(1/2) + b*x^(5/2))